
Customer: Gable Finance
Date: 01 Nov, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Gable
Finance

Approved By Luciano Ciattaglia | Director of Services at Hacken OÜ

Auditor Jakub Heba

Auditor Vladyslav Khomenko

Tags Flashloans, Staking

Platform Radix DLT

Language Rust/Scrypto

Methodology Link

Website https://gable.finance/

Changelog 10.10.2023 – Initial Review
01.11.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://gable.finance/


Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Checked Items 7
Findings 9

Critical 9
High 9

H01. Owner could withdraw more than he has deposited as owner_liquidity 9
Medium 11

M01. Missing upper bound on interest rate change 11
M02. Missing validations in multiple calculations could lead to unexpected
state 11

Low 12
L01. Macros used for debugging should not be used in production code 12
L02. Owner is able to unlock and update royalties for function calls 12
L03. Wrong limit for the size of box 13
L04. Floating Language Version 13
L05. Test functions should be removed 14

Informational 15
I01. Suggestion for searching a vacant box 15
I02. Unformatted Code 16
I03. The contract code is a single monolith file 16
I04. Suggestions for idiomatic code style 17
I05. Former name is mentioned 17

Disclaimers 18
Appendix 1. Severity Definitions 19

Risk Levels 19
Impact Levels 20
Likelihood Levels 20
Informational 20

Appendix 2. Scope 21

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Gable Finance (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

System Overview

Gable is a protocol creating the liquidity market on Radix DLT. Users can
borrow funds without collateral in the form of flash loans, as well as earn
staking rewards and interest earnings from supplying their tokens to the
protocol.

Users that are staking XRD on the Gable validator receive liquid staking
units (LSU tokens) that can be deposited in the flashloan pool to earn some
interest.

Borrowers that take loans repay it with some interest that is then split
50-50 between the users that deposited LSU and the smart contract owner.

Privileged roles
● The owner of the contract could perform multiple administrative

changes, like changing interest rates, updating suppliers key value
store, deposit and withdraw liquidity to the pool directly,
depositing and withdrawing validator node ownership token, as well as
perform unstaking and claiming operations.

● The admin role can perform most of the owner’s actions, except from
depositing and withdrawing liquidity and validator node ownership
token.

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional and technical requirements were provided.
● Technical description and diagrams were provided.
● The code implements complex calculations logic with small amounts of

descriptions and requirements.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.
● The code is readable and easy to digest.
● Most of the methods are described with appropriate comments.
● Test cases are well described with requirements.

Test coverage
Code coverage of the project could not be directly calculated with common
tools due to the likely lack of support for Scrypto. Nevertheless, taking
into account the functional coverage and the number of tests available in
the code repository - the tests cover approximately 2/3 of the codebase.

● Deployment and basic user interactions are covered with tests.
● Negative cases coverage is missed.
● Interaction with validator and methods associated with these

operation are not covered

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Summary
According to the assessment, the Customer's smart contract has the
following score: 8.7.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

09 October 2023 5 2 1 0

1 November 2023 0 0 0 0

Risks

● The smart contract could be upgraded and its functionality may be
changed.

● Centralization and the owner's ability to withdraw whole liquidity
from the pool might be dangerous, if his wallet/badge will be
compromised.

www.hacken.io
6



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
issues

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Unchecked
Errors

If a function returns a Result, it should
not be ignored. Passed

Access
Control &
Authorizatio
n

Ownership takeover should not be possible.
All crucial functions should be protected.
Users could not affect data that belongs
to other users.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Rust
Functions

Deprecated built-in functions should never
be used. Passed

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Block values
as a proxy
for time

Block numbers should not be used for time
calculations. Not

Relevant

Signature
Reuse

Signed messages that represent an approval
of an action should not be reusable.

Not
Relevant

Weak Sources
of
Randomness

Random values should never be generated
from Chain Attributes or be predictable. Not

Relevant

Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Calls Only
to Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or be
locked on the contract.

Passed

www.hacken.io
7



User
Balances
Manipulation

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency

Smart contract data should be consistent
all over the data flow. Passed

Flashloan
Attack

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Passed

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Gas and
Loops

Transaction execution costs should not
depend dramatically on the amount of data
stored on the contract.

Passed

Compiler
Warnings

The code should not force the compiler to
throw warnings. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles
Usage

The code should have the ability to pause
specific data feeds that it relies on.
This should be done to protect a contract
from compromised oracles.

Not
Relevant

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be sufficient,
with both negative and positive cases
covered. The usage of contracts by
multiple users should be tested.

Failed

Stable
Imports

The code should not reference draft
contracts, that may be changed in the
future.

Passed

Unsafe Rust
code

The Rust type system does not check the
memory safety of unsafe Rust code. Thus,
if a smart contract contains any unsafe
Rust code, it may still suffer from memory
corruptions such as buffer overflows, use
after frees, uninitialized memory, etc.

Passed

www.hacken.io
8



Findings

Critical

No critical severity issues were found.

High

H01. Owner could withdraw more than he has deposited as owner_liquidity

Impact High

Likelihood Medium

The owner can provide funds to the flashloan pool in the form of a
deposit, so that there is some liquidity in the protocol - as well as
withdraw them. The functions owner_deposit_xrd and owner_withdraw_xrd
are used for this purpose.

An incorrect validation was found in the owner_withdraw_xrd function
regarding verification whether the amount paid is equal to or less
than the liquidity in the pool. Unline, there should be a check
comparing the mentioned amount with the amount of liquidity deposited
by the owner.

pub fn owner_withdraw_xrd(&mut self, amount: Decimal) -> Bucket {

// Ensure amount is positive

assert!(

amount > Decimal::ZERO,

"Please withdraw an amount larger than 0"

);

// Ensure amount is less or equal to liquidity provided by owner

assert!(

amount <= self.liquidity_pool_vault.amount(),

"Please withdraw an amount smaller than or equal to {}",

self.owner_liquidity

);

Consequently, if, via the claim_xrd function, there are more funds in
the pool than the owner initially deposited, then he is able to
withdraw all of them, even though they are not his property. This is
possible because amounts and liquidity are based on values of the
Decimal type, which can be negative. Then the contract will not
return panic if owner_liquidity drops below zero, for example to
-1000.

www.hacken.io
9



Proof of Concept:

Test shows that after the validator sends funds to the liquidity
pool, the owner is able to withdraw 400 tokens more than he himself
deposited.

#[test]

fn owner_withdraws_more_than_deposited() -> Result<(), RuntimeError> {

//

let (mut env, mut flashloanpool) = setup_flashloan_pool()?;

let xrd_bucket: Bucket = env.with_auth_module_disabled(|env| {

// owner deposits 100 XRD

let rtn = ResourceManager(XRD).mint_fungible(100.into(), env);

let _ = flashloanpool.owner_deposit_xrd(rtn.unwrap(), env);

// validator sends 1000 XRD as staking rewards

let rtn2 = ResourceManager(XRD).mint_fungible(1000.into(), env);

let _ = flashloanpool.deposit_batch(rtn2.unwrap(), env);

// owner withdraws 500 XRD, 400 more than he deposited

let bucket = flashloanpool.owner_withdraw_xrd(dec!("500"), env);

bucket

})?;

let flashloanpool_state =

env.read_component_state::<FlashloanpoolState, _>(flashloanpool)?;

let xrd_amount = flashloanpool_state.liquidity_pool_vault.amount(&mut

env)?;

let owner_amount = flashloanpool_state.owner_liquidity;

// Tokens left in the pool

assert_eq!(xrd_amount, dec!("600"));

// Tokens owned by the owner - as far as he withdraws more than he

deposited, value is lower than zero

assert_eq!(owner_amount, dec!("-400"));

Ok(())

}

Path: ./flashloan-pool/src/lib.rs : owner_withdraw_xrd()

Recommendation: owner_withdraw_xrd function should be adjusted so
that assert is checking that the amount requested is equal to or less
than the liquidity owned by the owner.

Found in: afeb034

Status: Fixed (Revised commit: a3fe638)

www.hacken.io
10



Medium

M01. Missing upper bound on interest rate change

Impact Medium

Likelihood Medium

It was noticed that one of the methods available only to the contract
OWNER or wallet with the ADMIN role is to change the interest rate in
the protocol. While there is validation that this value is not
negative, so there is no upper maximum value it can take. As a
consequence, the user may pay a "fee" several times higher than the
loan amount he took out.

This is especially dangerous in the current configuration, in which
OWNER is a single wallet and is exposed to compromise.

Path: ./flashloan-pool/src/lib.rs : update_interest_rate()

Recommendation: A maximum cap on the interest_rate variable should be
implemented so that even the OWNER of the contract cannot set it to
an illogically high value that affects critical protocol
functionality.

Found in: afeb034

Status: Fixed (Revised commit: cedf40a)

M02. Missing validations in multiple calculations could lead to
unexpected state

Impact Medium

Likelihood Medium

Most of the numeric variables in the contract are of Decimal type.
Unlike Uint, Decimal allows you to store and manipulate negative
numbers. If the business logic does not take into account a number
less than zero in a given context, appropriate validation should take
place so that if the "zero" threshold is exceeded, an error is
returned.

This situation can be observed in the update_aggregate_im function,
where during the interest_new calculation it is not verified whether
owner_liquidity is not equal to total_liquidity, so if the values of
rewards_new, rewards_aggregated or interest_aggregated are greater
than zero, then interest_new will be negative.

Additionally, in the update_supplier_kvs function it was noticed that
there is no validation whether box_lsu is different from zero, which

www.hacken.io
11



may cause the contract to panic when calculating the
supplier_relative_lsu_stake variable.

Path: ./flashloan-pool/src/lib.rs : update_interest_rate()

Recommendation: We suggest adding additional validations in all
places where Decimal values should not exceed the zero threshold.
Additionally, the suggested solution is to verify all divisor values
in the context of their being different from zero.

Found in: afeb034

Status: Fixed (Revised commit: e5c8e29)

Low

L01. Macros used for debugging should not be used in production code

Impact Low

Likelihood Medium

The current contract code has been found to contain many instances of
debugging macros, such as debug!() and info!(). While they are very
helpful during the code development and testing phase, their use in
production code is considered bad practice. Additionally, each
operation that stores some data in memory causes the virtual machine
to perform some work - and thus increases the cost of gas needed to
perform this transaction.

Path: ./flashloan-pool/src/lib.rs : most of the contract’s functions

Recommendation: If this type of methods are used to transfer certain
state to off-chain components, for example in the form of logs - it
seems more appropriate to use event emitting. Otherwise, you should
consider removing unnecessary code fragments from the codebase.

Found in: afeb034

Status: Fixed (Revised commit: 6cfbaf4)

L02. Owner is able to unlock and update royalties for function calls

Impact Low

Likelihood Low

The owner has set up some royalties for public methods and even
specified that the amount is locked. However they reserved a right to
unlock and update the amount they charge from users for calling these
methods (protocol enforces a hard cap).

www.hacken.io
12



Since the royalties are marked as locked, the assumption is that they
should be unchanged.

.enable_component_royalties(component_royalties! {

roles {

royalty_setter => OWNER;

royalty_setter_updater => OWNER;

royalty_locker => OWNER;

royalty_locker_updater => OWNER;

royalty_claimer => OWNER;

royalty_claimer_updater => OWNER;

},
init {

get_flashloan => Xrd(1.into()), locked;

...

Path: ./flashloan-pool/src/lib.rs : instantiate_flashloan_pool()

Recommendation: Restrict ability to unlock royalties and/or mark the
royalties as updatable. You can also specify the amount to be an
approximate USD equivalent with Usd(amount.into()).

Found in: afeb034

Status: Fixed (Revised commit: aee1aca)

L03. Wrong limit for the size of box

The box_size is set to 250 in the beginning. It is possible to lower
it, but not possible to change it back to 250. This change multiplies
as the box_size * box_size is the maximum possible number of users of
the contract.

Path: ./flashloan-pool/src/lib.rs : update_box_size()

Recommendation: Check the value inclusively.

Found in: afeb034

Status: Fixed (Revised commit: a748fc7)

L04. Floating Language Version

It is preferable for a production project, especially a smart
contract, to have the programming language version pinned explicitly.
This results in a stable build output, and guards against unexpected
toolchain differences or bugs present in older versions, which could
be used to build the project.

www.hacken.io
13



The language version could be pinned in automation/CI scripts, as
well as proclaimed in README or other kinds of developer
documentation. However, in the Rust ecosystem, it can be achieved
more ergonomically via a rust-toolchain.toml descriptor (see
https://rust-lang.github.io/rustup/overrides.html#the-toolchain-file)

Paths: ./rust-toolchain.toml

Recommendation: Pin the language version at the project level.

Found in: afeb034

Status: Fixed (Revised commit: e8da2c1)

L05. Test functions should be removed

Impact Low

Likelihood Low

One of the methods available for public call is deposit_batch. It is
used to manually add funds to stacking rewards, however, both in the
documentation and in the contract code it is specified as “Temporary”
due to the need to simulate the validator during the testing phase.

While it does not pose a direct threat to the contract, such features
should not be available in the production version of the code.

Path: ./flashloan-pool/src/lib.rs : deposit_batch()

Recommendation: You should make sure that the final version of the
protocol will be free from test functions and these simulating
certain operations. In code marked as "release version", the
deposit_batch function and its associated method should be removed.

Found in: afeb034

Status: Fixed (Revised commit: 49452f7 and 53f392b)

www.hacken.io
14

https://rust-lang.github.io/rustup/overrides.html#the-toolchain-file


Informational

I01. Suggestion for searching a vacant box

In the deposit_lsu function, code is looking for an index of a box
(box_nr) for saving deposit info.

for (key, values) in &self.supplier_aggregate_im {

// Check if the Vec is not empty and satisfies your condition

if let Some(first_value) = values.first() {

if *first_value < self.box_size.into() {

// update box number

box_nr = *key;

// update existing supplier's info before adding a new

supplier

self.update_supplier_kvs(box_nr);

// Set the flag to true to indicate that the condition has

been satisfied

condition_satisfied = true;

break;

}

}

}

After that, condition is checked, and based on a result, some actions
are performed:

if condition_satisfied {

// Scenario 1: Add new supplier to the existing key value store and

index map

...

} else {

// Scenario 2: In case that all boxes are full or no box exists, a

new box has to be inserted

...

}

The code can be simplified to improve Code Quality.

Path: ./flashloan-pool/src/lib.rs : deposit_lsu()

www.hacken.io
15



Recommendation: Consider using optional box index, and matching on
the option. Sample implementation is lister below:

let mut vacant_box = None;

for (box_nr, values) in &self.supplier_aggregate_im {

if values.first().is_some_and(|suppliers_in_box| *suppliers_in_box <

self.box_size.into()) {

vacant_box = Some(*box_nr);

break;

}

}

match vacant_box {

Some(box_nr) => ...,

None => ...,

}

Found in: afeb034

Status: Fixed (Revised commit: 35f25c6)

I02. Unformatted Code

cargo fmt yields changes in 2 files total. Formatting the code is
recommended for good Code Quality.

Path:

● ./flashloan-pool/src/events.rs
● ./flashloan-pool/src/lib.rs

Recommendation: Consider formatting the code using rustfmt or an
equivalent.

Found in: afeb034

Status: Fixed (Revised commit: 16dd2e3)

I03. The contract code is a single monolith file

In this commit, the lib.rs, main source file has 1009 lines.
Splitting it into separate files/modules would increase its
readability, hence its quality. Big chunks of logic can be extracted
into separate functions, even if they are called once; just to make
it easier to digest and reason about.

Path: ./flashloan-pool/src/lib.rs

www.hacken.io
16



Recommendation: Consider splitting large functions into smaller
and/or moving the actual code of the contract’s methods into a
separate file.

Found in: afeb034

Status: Fixed (Revised commit: 0b13351)

I04. Suggestions for idiomatic code style

cargo clippy is a popular tool for catching common mistakes and
improving the code. It reports some possibly useful code changes.

Path: ./flashloan-pool/*

Recommendation: Consider following its suggestions and/or using cargo
clippy --fix to apply some of them automatically.

Found in: afeb034

Status: Fixed (Revised commit: 82f9ac1)

I05. Former name is mentioned

The README.md file as well as Functional Requirements mentions the
old protocol name.

Path: ./flashloan-pool/README.md

Recommendation: Consider replacing it with the relevant name.

Found in: afeb034

Status: Fixed (Revised commit: 794794e)

www.hacken.io
17



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
18



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and in most cases cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
19



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
20



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository
The scope of the audit is a part of the repository:
https://github.com/gable-finance/gable/tree/main/src/backend/scrypto/f
lashloan-pool/

Commit afeb0343533798020630fcf45432abce7580b7e8

Whitepaper Link

Requirements Link

Technical
Requirements Link

Contracts File: ./flashloan-pool/src/events.rs
SHA3: 60281431dfd06c6392f01fedccd6b01a189101edaef3401cd4a6910b

File: ./flashloan-pool/src/lib.rs
SHA3: 75250e5c25471a463a9f82e54fcec1633e9e9fcd04379233aa5f36d8

Second review scope

Repository
The scope of the audit is a part of the repository:
https://github.com/gable-finance/gable/tree/main/src/backend/scrypto/f
lashloan-pool/

Commit 82f9ac166b194a7b437deb35dabf3c8cccd6f327

Whitepaper Link

Requirements Link

Technical
Requirements Link

Contracts File: ./flashloan-pool/src/events.rs
SHA3: 30ab06eb53d6444a1ff3d1430834230549ac06b4ec3083cf21b993774e092e25

File: ./flashloan-pool/src/lib.rs
SHA3: 09618aad988af20b259fec5faa1bbae678cf54517f108319d2c0c99e2fce7e02

File: ./flashloan-pool/src/nft_data.rs
SHA3: 94d831216fb51c3129417545d8055b49f458664a04be748f9182a160c88d5c58

File: ./flashloan-pool/src/tokens.rs
SHA3: c05b032f8bd908354545e17c1b53f751a0c45637f0efc10575d22fe9daf1985f

www.hacken.io
21

https://github.com/gable-finance/gable/tree/main/src/backend/scrypto/flashloan-pool
https://github.com/gable-finance/gable/tree/main/src/backend/scrypto/flashloan-pool
https://gable.finance/gable-v1-whitepaper.pdf
https://docs.gable.finance/faq/faq
https://docs.google.com/document/d/17KyHMHzUJGIvr-TcT__yB_yWnghxx8phSl4eyLNeXDc/edit
https://github.com/gable-finance/gable/tree/main/src/backend/scrypto/flashloan-pool
https://github.com/gable-finance/gable/tree/main/src/backend/scrypto/flashloan-pool
https://gable.finance/gable-v1-whitepaper.pdf
https://docs.gable.finance/faq/faq
https://docs.google.com/document/d/17KyHMHzUJGIvr-TcT__yB_yWnghxx8phSl4eyLNeXDc/edit

